Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Microbiol Infect ; 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2227517

ABSTRACT

OBJECTIVES: To monitor the early emergence of genetic mutations related to reduced susceptibility to monoclonal anti-body (mAb)-based treatment in immunocompromised patients with long-term viral excretion using whole-genome sequencing at a tertiary university hospital in Barcelona, Spain. METHODS: Serial severe acute respiratory syndrome coronavirus 2-positive samples (mid-December 2021-mid-March 2022) from eight immunosuppressed, fully vaccinated patients (for solid-organ transplantation or haematologic malignancies) with long-term viral excretion despite undergoing mAb therapy (sotrovimab) for coronavirus disease 2019 were selected. Whole-genome sequencing was performed following the ARTIC, version 4.1, protocol on the MiSeq platform. Mutations in the coding sequence of the spike protein with a frequency of ≥5% were studied. RESULTS: A total of 37 samples from the studied cases were analysed. All the cases, except one, were confirmed to have the Omicron variant BA.1; one had Delta (AY.100). Thirty-four different mutations were detected within the receptor-binding domain of the spike protein in 62.5% of patients, eight of which were not lineage related and located in the sotrovimab target epitope (P337L, E340D, E340R, E340K, E340V, E340Q, R346T and K356T). Except for P337L, all changes showed a significant increase in frequency or fixation after the administration of sotrovimab. Some of them have been associated with either reduced susceptibility to mAb therapy, such as those at position 340, or the acquisition of a new glycosylation site (346 and 356 positions). CONCLUSIONS: This study highlights the importance of monitoring for early in vivo selection of mutations associated with reduced susceptibility to mAb therapy, especially in immunocompromised patients receiving anti-viral drugs, whose immune response is not able to control viral replication, resulting in long-term viral shedding, and those receiving selective evolution pressure. Virologic surveillance of genetically resistant viruses to available anti-viral therapies is considered a priority for both patients and the community.

2.
Sci Rep ; 12(1): 22571, 2022 12 29.
Article in English | MEDLINE | ID: covidwho-2186008

ABSTRACT

The SARS-CoV-2 Omicron variant emerged showing higher transmissibility and possibly higher resistance to current COVID-19 vaccines than other variants dominating the global pandemic. In March 2020 we performed a study in clinical samples, where we found that a portion of genomes in the SARS-CoV-2 viral population accumulated deletions immediately before the S1/S2 cleavage site (furin-like cleavage site, PRRAR/S) of the spike gene, generating a frameshift and appearance of a premature stop codon. The main aim of this study was to determine the frequency of defective deletions in prevalent variants from the first to sixth pandemic waves in our setting and discuss whether the differences observed might support epidemiological proposals. The complete SARS-CoV-2 spike gene was deeply studied by next-generation sequencing using the MiSeq platform. More than 90 million reads were obtained from respiratory swab specimens of 78 COVID-19 patients with mild infection caused by the predominant variants circulating in the Barcelona city area during the six pandemic waves: B.1.5, B.1.1, B.1.177, Alpha, Beta, Delta, and Omicron. The frequency of defective genomes found in variants dominating the first and second waves was similar to that seen in Omicron, but differed from the frequencies seen in the Alpha, Beta and Delta variants. The changing pattern of mutations seen in the various SARS-CoV-2 variants driving the pandemic waves over time can affect viral transmission and immune escape. Here we discuss the putative biological effects of defective deletions naturally occurring before the S1/S2 cleavage site during adaption of the virus to human infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Codon, Nonsense
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123700

ABSTRACT

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Humans , Follow-Up Studies , Mutagens , Nucleotides , Quasispecies/genetics , Ribavirin/therapeutic use , SARS-CoV-2/genetics , Hepatitis E/drug therapy , Hepatitis E virus/drug effects , Hepatitis E virus/genetics
5.
Microorganisms ; 9(12)2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1554970

ABSTRACT

Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.

6.
Sci Rep ; 11(1): 17063, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1373449

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major public health threat for migrant populations in Spain and efforts to scale up testing are needed to reach the WHO elimination targets. The Hepatitis B Virus Community Screening and Vaccination in Africans (HBV-COMSAVA) study aims to use point-of-care testing and simplified diagnostic tools to identify, link to care, or vaccinate African migrants in Barcelona during the COVID-19 pandemic. From 21/11/20 to 03/07/2021, 314 study participants were offered HBV screening in a community clinic. Rapid tests for HBsAg screening were used and blood samples were collected with plasma separation cards. Patients received results and were offered: linkage to specialist care; post-test counselling; or HBV vaccination in situ. Sociodemographic and clinical history were collected and descriptive statistics were utilized. 274 patients were included and 210 (76.6%) returned to receive results. The HBsAg prevalence was 9.9% and 33.2% of people had evidence of past resolved infection. Overall, 133 required vaccination, followed by post-test counselling (n = 114), and linkage to a specialist (n = 27). Despite the COVID-19 pandemic, by employing a community-based model of care utilizing novel simplified diagnostic tools, HBV-COMSAVA demonstrated that it was possible to diagnose, link to care, and vaccinate African migrants in community-based settings.


Subject(s)
COVID-19/epidemiology , Hepatitis B, Chronic/diagnosis , Mass Screening/methods , Pandemics , Emigrants and Immigrants , Female , Humans , Male , Middle Aged , Point-of-Care Testing , Prevalence , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL